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A linear stability analysis of the inviscid, parallel flow of air over water leads to an 
eigenvalue problem for the wave speed, which is solved numerically for air profiles 
typical of both laminar and turbulent flows. Comparison is made with Miles’ (1957) 
theory; growth rates differ from those predicted from the Miles (1957) formula but are 
in agreement with Conte & Miles’ (1959) computations for turbulent flow profiles. In 
the limit of a highly sheared wind profile the numerical computations retrieve the 
Kelvin-Helmholtz instability. 

1. Introduction 
Miles (1957) described a quasi-steady mechanism by which a parallel, sheared, 

inviscid air flow could amplify water waves. His analysis led to a boundary value 
problem for the perturbation stream function and a formula for the growth rate. An 
approximate solution to the boundary value problem was used to write the growth rate 
in terms of wavelength and wind velocity profile. The formula is valid for a wave that 
is sufficiently long that the associated critical layer in the air lies above the viscous 
sublayer adjoining the water surface. A physical interpretation was given by Lighthill 
(1962) in which it was demonstrated that a perturbation to a parallel air flow due to 
the presence of a water wave could grow in the neighbourhood of the critical layer, 
leading to growth of the wave. Conte & Miles (1959) solved the boundary value 
problem for the perturbation stream function numerically, and Miles (1959) states that 
the numerical growth rates are somewhat smaller than those calculated from his 
formula. Miles’ theory of water-wave generation has played a central role in much of 
the subsequent theoretical and experimental work on the formation of water waves by 
wind. 

Following the work of Benjamin (1959) on shearing flow over a wavy boundary, 
Miles (1962b) incorporated a viscous boundary layer in the air at the water surface, 
thus extending his theory to include shorter waves for which the critical layer lies in the 
viscous sublayer ; with this modification the wave generation mechanism is commonly 
refered to as the ‘ Miles-Benjamin ’ mechanism. Subsequent papers concerning the 
viscous theory include those of Valenzuela (1976) who studied the growth of 
capillary-gravity waves by solving the Orr-Sommerfield equation numerically for a 
coupled air-water flow, and van Gastel, Janssen & Kamen (1985) who re-derived the 
Miles-Benjamin theory using asymptotic expansions. This theory has been used for 
comparison with experiments in which the waves generated have lengths of a few 

t With an Appendix by J. W. Miles 
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centimetres, for example the wind-wave tunnel experimental work of Kahma & 
Donelan (1988). 

Akylas (1982) examined direct resonance between the weakly unstable water modes 
predicted by the Miles theory and Tollmien-Schlichting waves in the air, the 
occurrence of which had first been demonstrated by Miles (1962b). For an air flow of 
Blasius boundary-layer type he demonstrated that direct resonance can occur for 
waves of length greater than 12 cm and provides a mechanism for the rapid 
amplification of such waves. 

Field work performed to examine the validity of the Miles (1957) mechanism 
includes Snyder & Cox (1966), Barnett & Wilkerson (1967), Dobson (1971), Elliott 
(1972), Snyder (1974) and Snyder et al. (1981). The observed growth rates were 
compared with the numerical results of Conte & Miles and the results of the further 
computations performed by Long (1980). With the exception of Snyder & Cox and 
Barnett & Wilkerson, these investigations involved making measurements of wave- 
induced pressure fluctuations above the water surface. Snyder & Cox and Barnett & 
Wilkerson measured the growth in height of waves, the former using a wave recorder 
towed by a boat and the latter using airborne radar measurements. The three earliest 
investigations found growth rates that exceeded those predicted from the Miles theory 
by a factor of between five and eight. Elliott and Snyder found growth rates that were 
much closer to those predicted by Miles, although Elliott’s growth rates exceeded those 
of Snyder by a factor of two. 

The discrepancies between the results of previous investigations and the difficulties 
associated with making measurements at sea led Snyder et al. to re-examine the 
methods by which pressure fluctuations were measured in the previous three studies 
and to make new measurements. They were able to reconcile the differences between 
the results of Elliott and Snyder and found the re-analysed results to be in agreement 
with their new data. These three consistent sets of results were found to be in 
reasonable agreement with the Miles theory. They were unable to explain the 
disagreement with Dobson’s results and the measurements made by monitoring wave 
heights. The results of a field investigation at sea by Hasselman & Bosenberg (1991) are 
also consistent with those of Snyder et al. 

Miles’ theory does not include the influence of turbulence in the air on the growth 
of waves apart from the use of logarithmic-type profiles for the wind. This deficiency 
has been addressed by several authors who have incorporated a turbulence model into 
their analysis. Van Duin & Janssen (1992) describe some of this work in an 
investigation of dependence of growth rates on model type. They note that until their 
study the Miles theory has shown better agreement with observed growth rates than the 
predictions of theories that include a turbulence model. They also comment that for 
long waves the observed growth rates of Snyder et al. exceed those of the Miles theory 
by a factor of two, but cite the work of Makin (1988) who claims that the experimental 
work may overestimate growth rates by a factor of two. These remarks appear to 
support the agreement between the Miles theory and the observed growth rates of 
Snyder et a/., but also demonstrate the uncertainty involved in measuring growth rates. 

The purpose of the present investigation is to re-examine the inviscid flow of air over 
water as a problem in hydrodynamic stability and to compare the results of a numerical 
solution of the resulting eigenvalue problem with the Miles (1957) formula, given by 
equation (2.10). We consider the stability of a basic state in which the water is stagnant 
and the wind speed increases monotonically from zero with height above the water 
surface. Two distinct types of air velocity profile are examined : exponential profiles 
that are representative of laminar flow and logarithmic profiles that are a more realistic 
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approximation to the mean flow of a turbulent wind. The condition that the critical 
layer should lie above the viscous sublayer limits the applicability of inviscid theory to 
gravity waves and so inviscid theory is more relevant to field experiments than 
laboratory investigations. 

Agreement between growth rates calculated from the Miles formula and from the 
numerics is found to be poor for the laminar-type profiles, but this is not surprising 
since we find that growth rates computed by either method depend sensitively on the 
wind profile. For the logarithmic profiles there is good qualitative agreement but we 
find that the Miles formula overestimates the numerical growth rates by a factor of 
approximately two. In contrast, we find good agreement between our results and the 
results presented by Conte & Miles (1959) in their table 1 .  

In the limit of a highly sheared exponential-type profile we find that the 
Kelvin-Helmholtz instability of a vortex sheet is retrieved. This is of mathematical 
rather than physical interest since the Kelvin-Helmholtz instability manifests itself at 
short wavelengths at which inviscid theory is not valid. 

Shemdin (1972) performed a numerical investigation of waves on an inviscid coupled 
air-water flow, when there is also a current in the water, with the aim of examining 
the effect of the current on the phase velocity of water waves, but he did not consider 
the occurrence of unstable modes. Shemdin found that surface drift increases the phase 
velocity of waves that are travelling in the direction of the drift, but that the effect was 
limited by the drift being at most 4 %  of the wind speed. For the long waves to which 
inviscid theory is applicable this correction is negligible, so in our investigation, 
consistent with Miles (1957), we have not included a current in the water. Similarly, 
surface tension at the water surface has not been included. 

An important result in the theory of inviscid channel flow is Howard’s (1961) 
semicircle theorem which restricts wave speeds c, with positive imaginary part, to lie in 
the semicircle in the upper half-c-plane with origin +( Umin + Urn,,) and radius 
+(Urn,, - Urnin). Urnin and Urn,, are the minimum and maximum velocity respectively of 
the basic paralleI flow. The theorem was originally proved for channel flows and was 
extended to a flow with a free surface by Yih (1972). In Appendix A we show that the 
theorem can be further extended to include coupled free-surface flows of the type being 
examined here. When the wind speed is unbounded, as it is for logarithmic-type 
profiles, the analysis proceeds as far as the conclusion below equation (A 3), which is 
that a necessary condition for instability is that the phase velocity is greater than Urnin. 

Another important result is Squire’s theorem for an inviscid fluid. The theorem, 
described for the case of channel flow by Drazin & Reid (1981), states that to every 
unstable three-dimensional disturbance of an ideal fluid in parallel flow there 
corresponds a more unstable two-dimensional disturbance that can be found by means 
of Squire’s transformation (Squire 1933). Morland, Saffman & Yuen (1991) extended 
the transformation and theorem to include a flow with a free surface, and the further 
extension of the transformation to the coupled free-surface flow considered here 
follows in a straightforward manner. However, the theorem can only be extended to 
include the laminar profiles and not the logarithmic profiles. The details are described 
in the Appendix. 

2. Mathematical formulation 
The basic flow consists of a semi-infinite, parallel flow of air above a semi-infinite 

stagnant body of water. The interface between the two fluids is a free surface which in 
the basic flow is planar, and across which fluid velocity is continuous. Our numerical 
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results are limited to the case when there is no current in the water, consistent with the 
problem analysed by Miles. A consequence of Squire’s transformation is that only two- 
dimensional disturbances to the basic state need be computed. 

Cartesian coordinates are defined with origin at the undisturbed interface, x-axis 
parallel to the interface and y-axis vertically upwards into the air. The fluids have 
velocity u = (u, v) and pressure p ,  with appropriate subscripts when it is necessary to 
distinguish between air and water. The interface is given by y = ~ ( x ,  t) .  The fluid 
motion in both fluids is governed by the Euler equations and the equation of 
continuity, 

u t+u .vu  = - v p / p + g ,  (2.1 a )  

v - u  = 0,  (2.1 b) 

where the acceleration due to gravity, g, acts in the negative y-direction. 
At the free surface continuity of pressure is applied, 

[PI; = 0 on y = 7, (2.2a) 

where indices a and w denote air and water respectively. The condition that the 
interface is a material surface of both fluids requires 

q t + u . V ~ - v = O  on y = y  (2.2b) 

to be applied for both fluids. At large distances from the interface the fluid velocity 
must tend to that of the basic state. 

With small time-dependent two-dimensional perturbations, the velocity and pressure 
are u = ( U +  u’, v’),p = -pgy + p r  and the free surface is y = 7’. Neglecting products of 
small quantities in (2 .  l), (2 .2)  and applying the boundary condition at infinity gives the 
linearized equations 

u; + uu; + u, v r  = - p ; / p ,  (2.3 a )  

v;+ uv;. = - p ; / p ,  (2.3 b) 

u;.+v; = 0 (2.3 c) 

7;+U&-v‘=O on y = O ,  (2.3 d )  
in the fluids, and 

(2.3 e )  

(2.3f 1 
where (2 .3d)  is applied for both air and water. We seek normal mode solutions of the 
form u’ = $,(y) ei(ks-mt) , u’ = - ik$(y) ei(kz-gt) and 7‘ = a e i ( k z - d )  , where k is the 
streamwise wavenumber and (T is the angular frequency, possibly complex. To obtain 
physical quantities the real parts of the above expressions are to be taken; $ is in 
general complex valued. Eliminating the pressure between (2.3 a)  and (2.3 b) gives 
Rayleigh’s equation 

(2.4a) 

where c = c / k  is the wave speed and the equation applies in both fluids. Equation 
(2.3 d )  gives $,(O) = $,(O) = a(c-  U(0)). When these relationships are used to eliminate 
a, and the normal mode form of the solution is substituted, (2.3e) becomes 

[p ( (U-~c )~$ , - (U , (U-c )+g)$ ) ]~  = 0 on y = 0. (2.4b) 

The boundary condition at infinity, ( 2 . 3 f ) ,  requires that 

$ + O  as y + f c o .  (2.4 c) 
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For laminar-type profiles the flow in the air is taken to be characterized by two 
parameters : the air velocity at large height above the water surface, U,, and a measure 
of the height to which vorticity has penetrated from the water surface, d,  defined by 

i.e. twice the height of the vorticity centroid. Two families of profiles are examined : the 
exponential profiles defined by 

U(y) = U,(1 -e-2?”d), 0 < y < 00, ( 2 . 6 ~ )  

and the error function profiles defined by 

U(y)= U,erf , O <  y <  co. (2) (2.6 b) 

The error function profiles arise when viscous air is started impulsively into motion 
with uniform velocity U ,  from rest. The vorticity-layer thickness then evolves in time 
as d = 4(v,t/n):. The exponential profiles are similar in shape to the error function 
profiles and have the convenient features that they allow Rayleigh’s equation to be 
integrated analytically (see Appendix B by Miles) and the integral in Miles’ formula for 
the growth rate to be evaluated exactly. When velocities are scaled with Urn and lengths 
with U i / g  the profiles depend on the single non-dimensional parameter d g / U i .  

The profiles taken to be representative of turbulent boundary layer flow are the ‘lin- 
log’ profiles which consist of a linear profile in a viscous sublayer that merges smoothly 
with a logarithmic velocity profile in a constant-stress region above. In the next section 
we present results for the following profile : 

where v is the kinematic viscosity of air, u* is the friction velocity, K is von 
Karman’s constant, A is the roughness constant and y1 is the transition height 
between the linear and logarithmic sections of the profile. For large 
y, U(y) - (u * /K)  (log ( u * y / v )  + A ) .  In our calculation we take K = 0.41, and in the 
results presented A = 2.3, which is a suitable value for flow over a smooth surface 
(Townsend 1976). We have also obtained some results for smaller values of A as a way 
of examining the influence of a water surface that has been roughened by the 
development of waves. The requirement that the profile is continuous at y = y l  
determines that u* yl/v = ( A  -log (~K)) /K x 6.1, which is within the accepted range of 
values for the viscous sublayer height. 

We have also examined the ‘lin-log’ profile described in Miles (1962~) and 
Valenzuela (1 976) which is given by 

(2.7 b) 

where a is defined by sinh(a) = 2u,~(y-y,)/u, and we take u* yl/v to be 
approximately 6.8 so that the large-y behaviour is the same as for the other lin-log 
profile. A purely logarithmic profile defined by 

(2 .7~)  

has also been used. This profile has the appropriate behaviour at infinity and the 
U(Y> = ( U * / K )  (1% (u* Y/. + 1/K) + 4, Y 2 0, 
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correct gradient at the water surface but has no viscous sublayer resulting in a vortex 
sheet at the water survace. All three profiles give similar results in the long-wave regime 
for which inviscid theory is valid. 

For the purposes of computation we define the wind speed by U ,  = 2024, and use 
the same scaling scheme as for the exponential-type profiles, which gives gu/U: as the 
dimensionless profile parameter. However, we present the results in dimensional 
variables. 

Since U = 0 in the water the solution of ( 2 . 4 ~ )  satisfying ( 2 . 4 ~ )  is $6, = A eky, where 
A is an arbitrary constant. Substituting for $6, in (2.4) and scaling lengths with U i / g  
and velocities with U ,  gives 

$6 YY - ( k ' + J q $ 6 = 0 ,  u- c o < y < c o ,  

sc2$6,+(s(Uyc-1)+1-c2k)q5 = 0 on y = O ,  
$6+0 as y + m ,  

where s = p,/p,, and all variables in (2.8) are non-dimensional. 
Equations (2.8) form an eigenvalue problem for the wave 

(2.8 a) 

(2.8 b) 
(2.8 c) 

speed c and the 
eigenfunction $6( y) .  After the scaling described above, the non-dimensional wave speed 
is found to be a function of the non-dimensional wavelength, the density ratio of air 
to water s, and the profile parameter ( d g / U i  in the case of the laminar profiles and 
g v / U z  for the turbulent profiles). We fix the density ratio as lop3 in all the 
computations. Numerical solution of the eigenvalue problem is performed by the 
iterative method described by Morland et al;  a two-point boundary value problem 
consisting of (2.8a), (2.8b) and a normalization condition q5'(0) = 1 is solved at each 
step of an application of the secant method to (2.8b). The two-point boundary value 
problem is solved by a shooting method. 

Since the semicircle theorem qualitatively delineates the regions where the wave 
speed is complex, the calculations are unaffected by the existence of a critical layer for 
the transition wavelengths, except in so far that fine resolution is required near the 
value of y for which U ( y )  = Re(c), when Im(c) is small. 

Solutions to the eigenvalue problem given in (2.8) will be compared with the results 
of Miles' analysis. He expressed the wave speed as 

c = cw( 1 + 0.5s(a + $3) ( U , / C , ) ~ ) ,  

where c, = (g /k) ;  is the phase velocity of water waves when pa = 0 and U ,  is a reference 
velocity for the air. The influence of the air flow on the water waves is contained in the 
quantities CL and p. Since s < 1 the correction to the phase velocity due to the air flow 
is small and Miles concentrated on finding p, for which he derived the formula 

(2.10) 

where 6 = ky, w([) = (U-  c,)/ U, and a prime denotes differentiation with respect to f .  
A subscript c indicates evaluation at the critical layer tc = ky,, which for a given profile 
and wavelength is defined by U(y,) = c,. If c, does not lie between the maximum and 
minimum values of U ( y )  then /3 is defined to be zero. From (2.9) the growth rate is 
given by ui = O.5skpU,2/cW. In the case of the exponential profiles described by ( 2 . 6 ~ )  
the expression for p, (2.10), can be evaluated to yield 

(2.1 1) 
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3. Results and discussion 

there are two distinct gravity waves with wave speed & c,, where c, is given by 
If there is no current in the air, i.e. U = 0, it is well known that for a given wavelength 

When there is a current in the air of the types considered in this paper we have found 
only two solutions at a given wavelength and these correspond to the gravity waves in 
the case of otherwise still air. The phase velocities are approximately & co; advection 
of the waves by the wind is very limited since the density of air is very small compared 
with that of water. This approximation remains valid unless the profile is highly 
sheared, in which case the Kelvin-Helmholtz instability manifests itself. This point is 
discussed further below. 

The semicircle theorem dictates that the phase velocity of an unstable mode must lie 
in the range of U,  which corresponds to the condition for instability in the Miles theory 
that c, must lie in the range of U. Our numerical results indicate that advection by the 
wind of the wave with phase velocity of approximately - c,, is never strong enough for 
the true velocity to be positive, and hence this mode is always stable. We find that the 
mode with positive phase velocity is unstable whenever its phase velocity lies in the 
range of U,  consistent with the Miles theory. 

For the exponential-type profiles when Ag/U: = 0 the air flow is a uniform stream 
and the interface is a vortex sheet. In this case the instability mechanism is the 
Kelvin-Helmholtz instability, an account of which can be found in Chandresakhar 
(1970), and for which the dispersion relation is 

As Ag/UL + O  with h 9 A ,  where h = 2n/k is the wavelength, the numerical 
computations retrieve the Kelvin-Helmholtz instability. In this limit the approximation 
Re (c) z c, becomes invalid for the unstable modes since from (3.2) their phase velocity 
is approximately constant, with value sU,/( 1 + s). The Kelvin-Helmholtz instability 
becomes significant in the instability of a smooth profile when A is small enough that 
waves that are long compared with A are Kelvin-Helmholtz unstable. From (3.2) and 
(3.1) modes are Kelvin-Helmholtz unstable when hg/Uk < 2ns/(l -s2) and hence the 
Kelvin-Helmholtz instability influences smooth profiles when Ag/ U: 4 2ns/( 1 - s2). 

Figure 1 (a,  b )  shows the growth rate against the phase velocity computed 
numerically and from the Miles formula for the exponential and error function profiles 
with A g / U i  = 0.1 and d g / U :  = 0.01. These values of A g / U i  fall out of the 
Kelvin-Helmholtz regime so that the wavelength can be retrieved approximately from 
Re(c) = c,. The figures show the sensitive dependence of growth rates on profile 
exhibited by both methods of computation; a factor of ten difference in Ag/U;  
produces a factor of approximately one hundred difference in growth rates. Also, 
despite the similarity between the two profile types, the figures show that at these values 
of A g / U i  the Miles formula produces larger growth rates than the numerics for the 
exponential profile and smaller growth rates for the error function profile. 

We find that the relative size of the maximum growth rates predicted by the two 
methods of computation varies significantly with Ag/ U:. For example, for the 
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FIGURE 1. Growth rate against phase velocity as given by the Miles formula and the numerical 
computations for the exponential and error function profiles. Curve (l), numerics, error function 
profile; (Z), Miles formula, error function profile; (3), numerics, exponential profile; (4), Miles 
formula, exponential profile. (a) A g / U i  = 0.1, (b)  Ag /U:  = 0.01. 
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FIGURE 2. Imaginary part of wave speed against the phase velocity computed numerically for 
both profiles when A g / U i  = ~ , Error function profile; ---, exponential profile. 

exponential profile at Ag/U: = 0.01 the maximum growth rate ratio of the Miles 
formula to the numerics is approximately 3 whilst at Ag/U: = 0.1 it is approximately 
1.5, and when A g / U i  exceeds a value of approximately 0.2 the numerical growth rates 
exceed the Miles growth rates. At A g / U i  = 1 the ratio of maximum growth rates has 
fallen to f for the exponential profile and for the error function profile and both 
values continue to decrease with increasing d g / U i .  Figure 1 (a, b) also shows that at 
a fixed d g / U :  the most unstable modes arising from the Miles formula have lower 
phase velocities, and hence wavelengths, than those arising from the numerics. We find 
this to be true at all values of d g / U i .  

Figure 2 shows plots of the imaginary part of the wave speed against the real part 
from the numerical computations when A g / U i  = Figure 3 shows the 
corresponding plots of wavelength against phase velocity, and a plot of wavelength as 
a function of phase velocity for gravity waves. Figures 2 and 3 show the change in 
character of the instability at small values of A g / U i ;  there is a band of wavelengths 
for which the phase velocity is approximately constant and in which Im (c ) /U,  attains 
its maximum value over all wavelengths. Away from this band of wavelengths 
Im (c)/ U ,  decays rapidly and the phase velocity tends to c,. 

When A g / U i  is decreased further our numerical results show that the dominant 
phase velocity of the unstable modes tends to the Kelvin-Helmholtz phase velocity. 
Similarly, the peak value of Im (c) tends to s;U,/(l +s), which is the maximum value 
of Im(c) from (3.2) (and occurs at zero wavelength when Ag/U& = 0). 

The logarithmic profiles show a clearer relationship between the Miles formula and 
the numerical computations, namely that growth rates calculated from the Miles 
formula significantly exceed those of the numerical computation. The qualitative 
agreement between the two methods of calculation is good as shown by figure 4(a, b), 
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FIGURE 3. Wavelength against the phase velocity from the numerical computations and from the 
gravity wave dispersion relation c = cw when AglU; = __ , Error function profile; ---, 
exponential profile ; - - -, gravity waves. 

which are plots of growth rate measured in s-* against wavelength measured in m, for 
friction velocities of 9.7, 19, 30, 39 and 50cm/s corresponding to wind speeds 
(according to the definition we have used) of 1.9, 3.8, 6 ,  7.8 and 10 m/s respectively. 

The peak in growth rate that can be observed in all the plots occurs close to the 
wavelength at which the critical layer passes between the viscous sublayer and the 
constant-stress region and hence is not in the regime of validity of inviscid theory. The 
Miles-Benjamin theory and Valenzuela’s computations indicate that when viscosity is 
included the growth rate peak occurs at wavelengths of order of a few centimetres for 
these friction velocities. Requiring that the critical layer is above the viscous sublayer 
gives an approximate bound on the wavelength for the validity of inviscid theory of 
hg/u2, % 500, where the velocity at the edge of the viscous sublayer has been taken to 
be lOu,. 

We have also compared our numerical results with those in table 1 of Conte & Miles 
(1959). The difference in treatment of the air flow near the water surface between our 
stability analysis and Miles’ theory prevents us from using Conte & Miles’s logarithmic 
profile in our computations, so we have used the logarithmic profile given by equation 
(2.7c), with the parameters adjusted so that it is in agreement with Conte & Miles’ 
profile for large y.  We find that the results are in good agreement if the critical layer 
lies outside the viscous sublayer. 

Our numerical results for the logarithmic profiles show that the growth rates of long 
waves for which the critical layer lies above the viscous sublayer are not sensitive to the 
details of the profile near the water surface. This is also a feature of Miles’ formula, 
which depends only on the profile above the critical layer. As a consequence our results 
are also relevant to wind blowing over a surface on which waves have already 
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developed, since above the waves the wind profile is logarithmic. (Miles 1957 reviews 
experimental work that supports this claim.) When there are waves present we cannot 
take into account the complicated form of the air flow near the water surface but this 
appears to be unnecessary. If the presence of waves is assumed to lead to a water 
surface with a roughness length, y ,  the turbulent mean flow is given by 
U ( y )  = ( u , / K )  log ( y / y l )  for y > y l  and y ,  % y,, where y1 is the viscous sublayer 
thickness (Townsend 1976). Comparison with the smooth surface profiles for y % y1  
suggests that the influence of the presence of waves can be modelled by reducing the 
roughness constant A in (2.7). Reducing A leads to generally reduced growth rates but 
produces no qualitative changes to figure 4(a, b). 

These observations suggest that if a wind starts to blow over initially still water the 
most rapidly growing waves will be short waves produced by the Miles-Benhamin 
mechanism. These waves will quickly equilibrate but the Miles mechanism will 
continue to act to produce longer waves. 

4. Conclusions 
An investigation of water-wave generation by the wind in which Miles’ (1957) 

growth rate formula has been compared with numerical solutions of the Rayleigh 
equation has shown that growth rates are extremely sensitive to changes in the air 
velocity profile for laminar-type profiles but less so for the more physically relevant 
logarithmic-type profiles. In the latter case we observed good qualitative agreement 
between growth rates computed by the Miles formula and the numerical computations, 
but found that the Miles formula overestimated growth rates by a factor of 
approximately two. However, we found good agreement with the numerical 
computations of Conte & Miles (1959). 

In the highly sheared limit the laminar profiles were shown to retrieve the 
Kelvin-Helmholtz instability of a vortex sheet. 

We would like to thank one of the referees for suggesting significant improvements 
to the paper, and John W. Miles for his comments. Partial support by the Office of 
Naval Research (Grant N000- 14-89-5- 1 164) is gratefully acknowledged. 

Appendix A. Extension of the semicircle theorem and Squire’s theorem 
A. 1. The semicircle theorem 

Following Howard (1961) and Yih (1972) a new dependent variable F = q5/ W,  where 
W = U-c,  is introduced into the boundary value problem (2.4), which after 
substitution becomes 

( W2F’)’ - k2 W2F = 0, (A 1 4  

[p(W2F’-g)];  = 0 on y = 0, (A 1b) 

F+O as y + k o o .  (A l c )  

Multiplying (A 1 a)  by pw, integrating from - 00 to 0, performing an integration by 
parts, and then adding the resulting equation to its counterpart obtained by carrying 
out the analagous procedure on (0, co) yields 
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+k21FI2. The imaginary where use has been made of ( A  1 b) and ( A  1 c), and Q = 
part of ( A  2)  is 

from which it can be seen that a necessary condition for instability is c, E ( Urnin, Urn,,), 
where Urnin and Urnax are respectively the minimum and maximum values of U over 
both water and air. Taking the real part of ( A  2) gives 

(P- S1, dy +Pa lom d ~ )  ( ( U - C r l 2  -c?> Q = ( (P, -PA g)lf'(0)12. 

(P- I:., dy +Pa Inm d ~ )  (uz - c," - 4) Q 2 0, 

(p,S(.,dy+PaInrndy)(C"-(u+b) U+ab)Q d 0, 

(A 4) 

If ci is non-zero then (A 3 )  can be multiplied by cJci and added to (A 4) to yield 

(A 5 )  

where the inequality sign follows from the right-hand side of (A 4) being positive. By 
noting that 

( A  6) 

where a = Urnin and b = Urn,,, and using (A 3 )  and ( A  5 )  to eliminate U from (A 6) it 
follows that 

and hence ( c , - $ ( u + ~ ) ) ~ + c ;  d ;(b-a)', ( A  8) 

which is the semicircle theorem. 

A.2.  Squire's theorem 
Consider three-dimensional disturbances proportional to ei(as+yz-nt) , where the 
coordinate system is the extension to three dimensions of the system described in 52. 
The standard form of Squire's Transformation, described in Drazin & Reid (1981), 
relates the three-dimensional disturbance to an associated two-dimensional disturbance 
via 

a u + y w  " oip Goi , ( A  9a-e) & = ( a 2  + y"+, = ~ , v = v ,  $=-, o - -  
oi a: a: 

where quantities in the associated two-dimensional problem are indicated by a 'hat' 
and u, v and w are the velocity components once the exponential dependence has been 
factored out. The transformation is extended to include the free boundary conditions 
( 2 . 3 d )  and (2.3e) by putting 

L i  = aa/oi, 2 = (&/a)", ( A  10a, b) 

where a is the wave amplitude, defined below (2.3), and g is the acceleration due to 
gravity. The transformation allows the growth rate for a three-dimensional disturbance 
to be computed from the growth rate for an associated two-dimensional disturbance. 

For the laminar velocity profiles considered in this paper the parameter dependence 
of the growth rate of two-dimensional disturbances can be written as 

@2D u m / g  = F ( k U i / g ,  A g / u i , P a / P w ) ,  (A 11) 



396 

where k is the wavenumber in the x-direction. Hence, by applying the above 
transformation, the growth rate of the three-dimensional disturbance is given by 

L. C. Morland and P. G. Safman 

We wish to compare the growth rate of the three-dimensional disturbance with those 
of two-dimensional disturbances under the influence of the same gravity and velocity 
profile. Equation (A 12) shows that the three-dimensional disturbance is equivalent to 
a two-dimensional disturbance at an increased value of A with g and U ,  held fixed. Our 
calculations show that the maximum value over all wavenumbers of the function F 
decreases sufficiently rapidly with increasing A g / U z  that, despite the factor of &/a, the 
growth rate of the three-dimensional disturbance is less than the maximum growth rate 
for two-dimensional disturbances. This means that for fixed gravity and velocity profile 
the most unstable disturbance is two-dimensional and the theorem is verified. 

For the logarithmic profiles A g / U z  is replaced by gv,/U: in ( A  1 1 )  and 
(&/a)2 A g / U i  is replaced by (&/a)2 v,g/Uz in (A  12). However, in this case the 
maximum value of F does not decrease with increasing v,g/Uz (the dependence of F 
on v,g/ U: is qualitatively the same as the dependence of the dimensional growth rates 
on l / u* ,  shown by figure 4) and hence the theorem does not follow. 

Both the extension of the semicircle theorem and Squire’s transformation and 
theorem can be modified to include surface tension without difficulty; the work of Yih 
and Morland et al., which includes surface tension, demonstrates how it would be 
introduced into the derivations above. 

Appendix B. Analytical integration for the exponential profile 
By John Miles 

IGPP, UCSD, 9500 Gilman Drive, La Jolla, CA  920934225, USA 
It appears to be worth recording that the analytical solution of the Rayleigh equation 
(2.4a) for the exponential profile ( 2 . 6 ~ )  yields the exact solution (Hughes & Reid 
1965) 

where p=a+(1+a2): ,  q=a- (1+a2) i ,  r =  1+2a, a = i k A ,  (B2a-4 

F is a hypergeometric function, y = (0, ye ,  co) map to t = ( 1  + e, 1,O) and 

The expansion offll + E )  about e = 0 through the analytical continuation offlt) into 
t ‘> 1 with arg( 1 - t )  = - 7c for t > 1 (since Im ye > 0) yields 

an(-€). 
n=O (n  -t 1 )  ! 

f ( l + e ) =  l + € E  (log .c - in + An) ,  
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and $ is the logarithmic derivative of the gamma function. Substituting (B 4) into 
(B la)  and letting €40  with a = O(l), we obtain 

(B 7) = (1 +~)a [ l  +s(l-a~)(lne-in+h,)-(l - ~ a ) ~ ~ + O ( e ~ l n ~ ) ] .  

If both a and E are small, 

$ o / $ c  = 1 - e / a + e ( l n ~ - ~ - i n - ~ ~ + 3 . 0 4 0 a c + $ ~ ~ -  1.904a2e+ ... . (B 8) 

The substitution of (B 8) into 

for the exponential growth rate (Miles 1957) yields results in agreement with figure 
1 (a, b) above. 

Turning to the limit a t  co, we expand the gamma functions in 

in inverse powers of a and invoke $(z) - logz to obtain 

$(2a) - $( 1) - 2 - + O(a-2) 
n=l O0 “I n 

= 1 +- log [2a( 1 - t)]  + y + O(a-2), 
201 l {  I 

(B 11a) 

(B 11b) 

where y is Euler’s constant. Substituting (B 11 b) into (B 1 a) and setting t = 1 + E ,  we 
obtain 

This work was supported in part by the Division of Ocean Sciences of the National 
Science Foundation, NSF Grant OCE92-16397 and by the Office of Naval Research 
NOOO14-92-5-1171. 
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